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Abstract

Program synthesis automatically derives programs from
specifications of their behavior. One advantage of pro-
gram synthesis, as opposed to manual coding, is that there
is a direct link between the specification and the derived
program. This link is, however, not very fine-grained: it
can be best characterized as Program is-derived-
from Specification. When the generated program
needs to be understood or modified, more fine-grained link-
ing is useful.

In this paper, we present a novel technique for automati-
cally deriving traceability relations between parts of a spec-
ification and parts of the synthesized program. The tech-
nique is very lightweight and works —- with varying de-
grees of success — for any process in which one artifact is
automatically derived from another.

We illustrate the generality of the technique by apply-
ing it to two kinds of automatic generation: synthesis of
Kalman Filter programs from specifications using the Aut-
oFilter program synthesis system, and generation of assem-
bly language programs from C source code using the GCC
C compiler. We evaluate the effectiveness of the technique
in the latter application.

1. Introduction

One way in which traceability information can be de-
rived is to augment the program synthesis system so that
manipulations and calculations it carries out during the syn-
thesis process are annotated with information on what the
manipulations and calculations were and why they were
made. This information is then accumulated throughout the

synthesis process, at the end of which, every artifact pro-
duced by the synthesis is annotated with a complete his-
tory relating it to every other artifact (including the source
specification) which influenced its construction. This ap-
proach requires modification of the entire synthesis system
— which is labor-intensive and hard to do without influenc-
ing its behavior.

We describe a lightweight, technique for deriving trace-
ability from a program specification to the corresponding
synthesized code. Once a program has been successfully
synthesized from a specification, small changes are system-
atically made to the specification and the effects on the syn-
thesized program observed. The technique builds on work
first described in [RG]. In this paper we describe how the
technique has been completely automated, and present an
evaluation of the results.

We have applied the technique to one of our program
synthesis systems, AUTOFILTER, and to the GNU C com-
piler, GCC. The technique was partially automated for the
AUTOFILTER application and fully automated for the GCC
application. The results are promising:

1. Inspection of the results indicates that in semiauto-
matic experiments with our synthesis system, most of
the connections derived from the specification to the
synthesized code are correct, and around half of the
lines in the synthesized code can be traced back to at
least one line of the specification.

2. In the GCC experiments, 75% of the traceability links
derived using automatic perturbation involving copy-
ing were correct. 20-40% of the lines in the gener-
ated assembler could be correctly traced back to the
C source program.

3. Small changes in the source often (especially in the
GCC examples) induce only small changes in the tar-



get.

2. Program Generation and Traceability

Traceability from requirements through to program code
provides a rationale for the code. There are many reasons
why this is desirable, of which some are:

� It provides an aid to understanding the code.
� It provides an aid to understanding the requirements.
� It provides an aid to understanding why the code does

or does not work correctly. This is particularly impor-
tant in safety and mission critical applications.

In practice, traceability can be hard to achieve when
human programmers are involved. Programmers are reluc-
tant to maintain documentation, and traceability is easily
broken if programming artifacts (requirements, design el-
ements, documents, code etc) are altered without making
corresponding changes to the other programming artifacts
which they should affect or be affected by.

Program synthesis is a technique for automatically deriv-
ing programs from specifications of their behavior. A good
specification language enables requirements to be stated in
a natural way. Program changes can be realized entirely as
changes to the program’s specification.

The Automated Software Engineering Group at the
NASA Ames Research Center has been researching and
building domain-specific program synthesis systems (re-
cently, AUTOBAYES [FS02], AUTOFILTER [WVS

�

01]
and before that AMPHION [LPPU94]). Since program syn-
thesis systems are in general large and complex, and there-
fore not necessarily entirely trustworthy, part of our re-
search has addressed the synthesis of non-code artifacts
which provide evidence that the synthesized programs cor-
rectly implement their specifications. In particular, the
group has been developing:

� extensible automatic certification of synthesized pro-
grams [WSF02, DF03] — the synthesis system synthe-
sizes code annotations along with the program code,
and these annotations are used to guide a theorem
prover to prove certain safety properties.

� automatic documentation of synthesized programs
[WVS

�

01] — program documentation is synthe-
sized at the same time as the program code.

Traceability information is another kind of non-code in-
formation which provides evidence of a program’s fitness
for its task.

In the following sections we outline two techniques by
which this traceability information can be automatically de-
rived. The first technique, which we will call in this paper
deep traceability, involves augmenting the program synthe-
sis system (including program schemas and axioms) so that

calculations carried out by the synthesis system are anno-
tated with information on what the calculations were and
why they were made. We concentrate in this paper on de-
scribing a second technique, which we call surface trace-
ability, which is novel and lightweight; once a program has
been successfully synthesized from a specification, small
changes are systematically made to the specification and the
effects on the synthesized program observed.

A note regarding notation: we call the input to the pro-
gram generation process the source, and the output the tar-
get. In the case of a program synthesis system, the source is
a specification, and the target is a program (C code, for ex-
ample). In the case of a compiler, the source is a (C) pro-
gram, and the target is an assembly language program.

3. Deep Traceability

A technically sound but heavyweight approach to trac-
ing from specifications to generated programs involves aug-
menting the program synthesis system (including program
schemas and axioms) so that calculations carried out by the
synthesis system are annotated with information on what
the calculations were and why they were made. This ap-
proach was adopted in the ExplainIt! extension of AM-
PHION/NAV [WVS

�

01]. AMPHION/NAV is a purely de-
ductive synthesis system, which extracts programs from
proofs carried out in a tableau style theorem prover. The
proofs can be structured into trees whose nodes are sets of
formulae, and an edge exists links two nodes if the first
is derived from the second. Explanations are attached to
the axioms in AMPHION/NAV’s domain theory, propagated
along the edges in the derivation tree, and finally incorpo-
rated into an XML document which links each program
statement to the axioms and parts of the program specifi-
cation involved in its construction.

The approach works well for a purely deductive synthe-
sis approach but requires extensive modification of the en-
tire synthesis system. For complex third-party code gener-
ators, for example a C compiler, the deep traceability ap-
proach is not practicable.

In the rest of this document, we describe a new technique
which can trace complex relationships between source and
target and requires very little effort to implement.

4. Surface Traceability

We discover, automatically, relationships between source
and target in the following way: first, the synthesis system
(or compiler) is applied to the source to generate the target.
We call the original source the nominal source and the cor-
responding generated target the nominal target. Next, small
changes (we call them perturbations) are made (one at a



time) to the source (yielding a perturbed source), and cor-
responding target programs are synthesized (or compiled)
from it (resulting in either failure, or in a perturbed target).
As long as the synthesis process is deterministic, differ-
ences between the nominal and perturbed target programs
can only be caused by the differences between the nomi-
nal and perturbed sources. We therefore associate lines in
the nominal target program which differ in a perturbed tar-
get program with the lines in the nominal source which were
changed by the perturbation. An example will demonstrate
how the technique works, as well as its flexibility.

Consider a system which automatically synthesizes En-
glish sentences from corresponding French specifications.
For our current purposes, assume that one word of source
(or target) is written per line of input (or output). Let the
nominal source be “Ceci n’est pas une pomme.” From this
we synthesize (using an automatic language translator, for
example) the nominal target, “This is not an apple.” Apply
separately the perturbations pomme � banane, pas � pipe,
and une � la, resulting in “This is not a banana.” for the
first perturbation, an error for the second, and “This is not
the apple.” for the third perturbation. We associate the dif-
ferences between the perturbed and nominal targets with the
corresponding perturbations, in this case we associate “ap-
ple” with “pomme” and “an” with “une”. The technique did
not require any knowledge of English or French, apart from
the ability to make localized changes in the (French) source
and detect differences induced in the (English) target.

The main advantages of the proposed technique are all
closely related:

1. It is very lightweight: it is extremely simple to imple-
ment, and quite effective. In our initial implementation
(

�
5), perturbations are applied by a line editor, and dif-

ferences are determined by the Unix diff program.

2. It does not require modification of the synthesis system
(or compiler). This greatly reduces the effort needed to
employ it, removes the possibility of inadvertently in-
troducing errors into the synthesis system when it is
modified, and makes the technique applicable to third-
party code generators such as compilers.

3. It does not require detailed, or indeed any knowledge
of the internal mechanisms of the synthesis system,
which is treated as a black box.

There are of course disadvantages, which we note here:

1. It cannot identify every part of the source which influ-
ences the target.

2. Some small changes in the specification can appear to
have profound effects when in fact the synthesized pro-
grams are equivalent. For example, a variable name
which occurs in many lines of the program might be
changed. Note that this effect would also appear in a

deep traceability approach unless measures were taken
to overcome it, for example by developing a notion of

� -equivalence (in the sense of the � calculus) for the
generated programs.

3. Some changes cannot be made without also making
other corresponding changes. For example, to discover
the effect on the target of the name of a function which
is declared in the source, all lines in the source which
contain that function name have to be changed simul-
taneously, or an error will result. We therefore can-
not discover the effect of function naming with only
single-line changes to the nominal specification.

4. It requires careful choice of which perturbations to ap-
ply to the source specification/program. We describe
how this choice can be automated in

�
7.

5. Initial Implementation

Manual experiments indicated that the technique might
be interesting, so we decided to automate it. The system is
used as follows:

� A list of perturbations is given to the system, expressed
as commands (the perturbation ed commands) for the
Unix ed editor. Each perturbation only alters a single
line in the source.

� For each perturbation, a shell script applies the follow-
ing steps:

– The perturbation is applied to the nominal speci-
fication to obtain a perturbed specification.

– The synthesis system is applied to the perturbed
specification, either failing, or yielding a per-
turbed program.

– If synthesis failed, this is noted in a log file, oth-
erwise the differences between the perturbed pro-
gram and the nominal program are computed (us-
ing Unix diff -w) and appended to the log file.

� Some irrelevant information is removed from the log
file (leaving for each change the specification line
changed followed by the ed commands produced by
diff which describe the difference (if any) between
the corresponding perturbed and nominal programs).

� A number of emacs macros are used to:

– Remove differences which only add lines to the
nominal program — we exclude these since we
are going to annotate the nominal program with
the changes and in this case the lines which are
added do not exist in the nominal program, only
in the perturbed program.
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Figure 1: Generation of annotations. Each ��� is a variant program and the corresponding ��� is a set of the line num-
bers of lines of the differences between ��� and the nominal source program.

– Move perturbations which produced no effect (or
only changed a date stamp in the generated tar-
get) into a separate file.

– For each remaining difference, derive an ed
command which will append the perturba-
tion ed commands to the lines in which program
which they affect.

� These derived ed commands are finally applied to the
nominal program, yielding the annotated program, in
which each line may be annotated with one or more
perturbation ed commands, corresponding to the per-
turbations which affected that line in the program (as
judged by that line differing in the perturbed program
from the nominal program).

6. Initial Results

In this section we describe the results of applying our
technique in two contexts: the AUTOFILTER program syn-
thesis system, and the GNU GCC compiler.

6.1. AUTOFILTER

Initially, the technique was manually applied to an AUT-
OFILTER specification (a simplified specification of part
of the Deep Space 1 probe’s attitude control system). The
specification has 134 lines (of which 44 are non-blank, non-
comment lines). The nominal program has 362 lines (of
which 235 are non-blank, non-comment lines). A total of
37 perturbations were manually applied. 9 led to failed syn-
thesis attempts, 9 did not lead to any changes in the synthe-
sized program, 6 changed only temporary variable names in
the generated code (the programs were � -equivalent), and
10 reveal interesting relationships between the source and
target.

In the first semiautomated experiment, using the same
specification, 67 perturbations were chosen: 18 led to failed
synthesis attempts, 19 did not lead to any change in the syn-
thesized program. The remaining 30 generated annotations
of the synthesized program. Of these 30, 6 changed many

lines in the target, changing the number or order of input
variables to the synthesized code, or the size of its internal
matrices and vectors. In total, 143 non-blank, non-comment
lines in the generated code were annotated.

In the second semiautomated experiment, applied to an
AUTOFILTER specification for thruster control during au-
tomated docking (source: 143 non-empty, non-comment
lines; output: 220 non-blank, non-comment lines), 43 per-
turbations were applied. 16 led to failed synthesis attempts,
6 did not lead to any changes in the synthesized program,
9 led to localized changes, 9 led only to temporary variable
name changes, and 3 changed many lines in the target.

Manual inspection of the annotated target programs pro-
duced in the two semiautomated experiments suggest that
most of the lines in the synthesized program can be traced
back to one or more lines in the specification, that the rela-
tionships identified between specification and synthesis pro-
gram are correct, as judged by someone who understand
the meanings of the specifications and the synthesized pro-
grams.

We now present a more detailed example.

6.2. GCC

In order to demonstrate the flexibility of our technique
for surface traceability, we applied it to the generation of as-
sembly language code from C source code. Figure 2 shows
the source program, and figure 3 shows the annotated as-
sembly language program which was generated. In order
to fit space requirements the information has been manually
edited: only the main section of the generated assembly lan-
guage code is shown, each perturbation has been written as
the source code line number to which it applied and a letter,
listed at the beginning of the assembler line which it traced.
The perturbations have been shown directly in the source
program listing. Only perturbations which traced lines in
the main section of assembler code in figure 3 are shown.
Others either had no effect, caused an error, or affected a
part of the assembler code outside the main section.



The resulting annotated assembly code identifies many
relationships between it and the C source code. Here is our
interpretation of some of the results: first, note that most
perturbations only affect a small number of lines in the gen-
erated assembler. The exceptions to this are perturbations
8A and 10E which change many lines of the generated as-
sembler code (probably because in changing the datatypes
which represent � and � they affect register allocation and
memory offsets although we can’t conclude this from our
experiments — to draw this conclusion probably requires
some knowledge of assembler and the amount of memory
needed to store ints versus doubles versus floats). Perturba-
tion 27H also results in a significant change, possibly for a
similar reason. Perturbations 16B, 16C, 16R identify those
parts of the target associated with the head of the for loop.
Perturbations 34L and 37M trace the call to the ����� func-
tion. Perturbation 30P traces the assignment of the result to� . Perturbation 40Q traces where � is printed. Perturbation
16R traces that add instruction to the loop header. Other re-
lationships between source and target are made evident by
our experiment: readers are invited to determine these them-
selves.

7. Automatic Generation of Perturbations

7.1. Introduction

In previous sections we showed how our technique of ap-
plying perturbations to a source and detecting how those
perturbations affect the target can be used to anno-
tate the target with traceability information connect-
ing some lines of the target program with correspond-
ing lines of the source. The technique was automatic
apart from a few steps: calling a few appropriate scripts
and macros, and specifying the perturbations. Automat-
ing the first of these is not difficult — it requires writ-
ing one more script which calls the right scripts at the
right times. The second is more fundamental in charac-
ter. In this section we show how perturbations can be
automatically generated. Derivation of traceability infor-
mation is then essentially automatic. We apply the tech-
nique to a simple C program, employing several different
kinds of perturbation. We evaluate the resulting traceabil-
ity information in terms of accuracy: what percentage of
traceability links correctly relate target statements to corre-
sponding source statements, and coverage: what percentage
of target statements are correctly related to any source state-
ment.

Figure 4 illustrates how the perturbations are generated.
We outline the steps here and describe them in more detail
in the following sections.

Generating slight variants of a given source program
is not trivial. The simplest automatic approach: randomly

adding, deleting etc characters and sequences of charac-
ters from the program is impractical — the vast majority
of the resulting programs would be syntactically ill-formed.
Ill-formed programs provide us with no traceability infor-
mation. If we have a more structured representation of the
program, however, we can limit the kinds of changes we
make to those which are likely to produce well-formed pro-
grams. For this reason, the first step of the automatic per-
turbation process is to parse the program into a structured
program representation — in our case the AUTOBAYES In-
termediate Language is a convenient choice. The result is a
Prolog term ( � , say). Well-defined C expressions and state-
ments of different kinds are represented by subterms with
different functors. For example, an assignment v=e is rep-
resented by a Prolog term �����	��
��� ����������� (where �� , ��� are
the AUTOBAYES Intermediate Language representations of
the C expressions v and e respectively). The parsed pro-
gram � is run through the AUTOBAYES code generator to
generate the nominal source program. The nominal source
program may differ in terms of formatting from the original
source program but should otherwise be functionally iden-
tical.

The AUTOBAYES Intermediate Language term � is then
perturbed in several different ways: by swapping two sub-
terms of � , by copying one subterm of � to another location
in � , by deleting a subterm of � , or by a small copy, which
is a copy restricted to only copying single operators to sin-
gle operators, or single constants to single constants, or sin-
gle variables to single variables. Some effort is made to en-
sure that these operations produce syntactically correct AU-
TOBAYES Intermediate Language terms. Each of these per-
turbed versions of � is then run through the AUTOBAYES

code generator. Each successful code generation yields a
variant program which differs slightly from the nominal
source program. The differences (line numbers) are local-
ized using diff -w and associated with the variant.

The end product of this process is a set � � � � � ��� of vari-
ant programs � � and associated differences � � (which are
sets of line numbers). Traceability information can then be
generated from these using the technique described in

�
5.

7.2. Parsing the Source

A small parser for C was written using a Prolog
DCG (approximately 200 lines of code including com-
ments). Programs are parsed into terms in the AUTOBAYES

Intermediate Language. The grammar suffices for the pur-
poses of experimentation, but no attempt has been made
to cover the whole C language. Some limitations are im-
posed by the AUTOBAYES Intermediate Language. For ex-
ample, for loops have a restricted form and a limited range
of data types is supported. Types int, bool, double,
void are supported, as scalars, 1- and 2-dimensional ar-



#include <stdio.h>
#include <math.h>

int main()�

double t, tf,
x, y;

8A int � double int i;

10E double � float double a = 60,
b = 0.0782,
kappa = 1.95,

13G 0.5 � 1 c = 0.5;
14H t � t+1 tf = 1.0/5.0;

16B 0 � 1 16C < � > 16R ++ � -- for(i=0; i < 100; i++)�

18D tf � t t = i * tf;

/*
y = a*exp(-b)...
x = c*kappa*a*...
*/

25F c � kappa x = c*
kappa*

27H t � t+1 ((1-pow(kappa,t))/
(1-

29I kappa � c kappa));
30P y � x y = a*

exp(
32J b � b-1 -b)*
33N 1 � 2 ((1-
34L exp � log exp(
35K b � kappa -b*

t))/
37M exp � log (1-exp(

-b)));

40Q x � kappa printf("%f %f ", x, y);�����

Figure 2: The C source code, and a list of the perturbations which applied to the section of assembly language code in figure 3.
Note that since our technique traces target lines of code to source lines of code, we have split compound statements into multiple
lines.

rays. Variables must be declared before the body of
the program code. Only the following high level con-
structs are supported: conditionals if ... then,
if ... then ... else, and loops of the form
for (<init>, <e1> <= <e2>, <v>++) <stmt>
where <init> is an assignment, <e1> and <e2> are ex-
pressions (i.e. the loop test must be “less than or equal
to”), <v> is any C variable and <stmt> is a statement (ei-
ther a single statement or a block enclosed in {...}).
Other limitations exist, for example a part of the gram-
mar is left recursive causing parsing of some expressions
not to terminate.

The result of parsing is an AUTOBAYES Intermediate
Language Prolog term representing the source program.

7.3. Generation of Perturbations

Auxiliary predicates getsub(+Term,?Pos,?SubTerm)
and setsub(+Term,?Pos,?NewSubTerm,?NewTerm) are de-
fined for accessing and modifying AUTOBAYES Inter-
mediate Language terms and subterms. A variant of an
AUTOBAYES Intermediate Language term � is gener-
ated as follows:



8A 16B st %g0, [%fp-52]
8A .LL3: ld [%fp-52], %o0
8A 16C cmp %o0, 99; ble .LL6

nop; b .LL4; nop
8A .LL6: ld [%fp-52], %f4; fitod %f4, %f2
18D ldd [%fp-32], %f4; fmuld %f2, %f4, %f2

std %f2, [%fp-24]
10E ldd [%fp-80], %o0
27H ldd [%fp-24], %o2

call pow, 0; nop; fmovs %f0, %f4; fmovs %f1, %f5
10E 25F ldd [%fp-88], %f2
10E ldd [%fp-80], %f6; fmuld %f2, %f6, %f2
8A 13G sethi %hi(.LLC5), %o1; or %o1, %lo(.LLC5), %o0

ldd [%o0], %f6; fsubd %f6, %f4, %f4
8A 10E 13G sethi %hi(.LLC5), %o1; or %o1, %lo(.LLC5), %o0
10E ldd [%o0], %f6
10E 29I ldd [%fp-80], %f8
10E fsubd %f6, %f8, %f6; fdivd %f4, %f6, %f4

fmuld %f2, %f4, %f2; std %f2, [%fp-40]
10E 32J ldd [%fp-72], %f2
10E 27H 32J fnegs %f2, %f4; fmovs %f3, %f5; std %f4, [%fp-16]

ldd [%fp-16], %o2; mov %o2, %o0; mov %o3, %o1;
call exp, 0; nop

10E std %f0, [%fp-96]
10E 35K ldd [%fp-72], %f4
10E fnegs %f4, %f2; fmovs %f5, %f3; ldd [%fp-24], %f4
10E 27H 32J fmuld %f2, %f4, %f6; std %f6, [%fp-16]

ldd [%fp-16], %o2; mov %o2, %o0; mov %o3, %o1
34L call exp, 0

nop
10E std %f0, [%fp-104]; ldd [%fp-72], %f2
10E 27H 32J fnegs %f2, %f8; fmovs %f3, %f9; std %f8, [%fp-16]

ldd [%fp-16], %o2; mov %o2, %o0; mov %o3, %o1
37M call exp, 0

nop; fmovs %f0, %f2; fmovs %f1, %f3
10E ldd [%fp-64], %f6
10E 27H 32J ldd [%fp-96], %f10; fmuld %f10, %f6, %f4
8A 13G 33N sethi %hi(.LLC5), %o1; or %o1, %lo(.LLC5), %o0

ldd [%o0], %f8
10E ldd [%fp-104], %f10

fsubd %f8, %f10, %f6
8A 13G sethi %hi(.LLC5), %o1; or %o1, %lo(.LLC5), %o0

ldd [%o0], %f8; fsubd %f8, %f2, %f2; fdivd %f6, %f2, %f6;
fmuld %f4, %f6, %f2

30P std %f2, [%fp-48]
8A 10E 13G 33N sethi %hi(.LLC6), %o1; or %o1, %lo(.LLC6), %o0
40Q ld [%fp-40], %o1; ld [%fp-36], %o2

ld [%fp-48], %o3; ld [%fp-44], %o4; call printf, 0; nop
8A .LL5: ld [%fp-52], %o0
16R 8A add %o0, 1, %o1
8A st %o1, [b .LL3

Figure 3: The annotated assembly language code.
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Figure 4: Automatic generation of perturbations. Boxes represent artifacts, lines represent processes. s, d, c, s’, d’,
c’ represent numbers. The input to the perturbation process is a single source C program � . The output is a set of
pairs � � ��� � where each � is a variant of � and � a list of the lines which differ between � and � .

� Generate a list � � containing the position of every sub-
term of � . Let � be the length of the list � � .

� Generate two random integers � , � , uniformly dis-
tributed in the range � � ��� � . From these generate two
random positions � , � , respectively the �
	�� and �	��
(counting from zero) elements of � � . Let ��� and ��
be the subterms of � at positions � and � respecively.

� If the user has not specified a particular operation to
be applied, randomly pick one of swap, copy, delete or
small copy.

� Perform the following action, depending on the chosen
operation:

– swap — return the term formed by setting posi-
tion � of � to �� and position � of � to ��� ,

– copy — return the term formed by setting posi-
tion � of � to �� ,

– small copy — a copy restricted to only copy-
ing single operators to single operators, or single
constants to single constants, or single variables
to single variables (e.g. replacing a “+” with a “-
”, or “1.002” with “-23” or “v” with “kappa”).

– delete — return the term formed by setting po-
sition � of � to ���� � , � or ����� � depending on
whether ��� is a statement, expression or boolean.

The result of the process is to produce a number of vari-
ants of the AUTOBAYES Intermediate Language term � .

7.4. Code Generation

AUTOBAYES’s code generator back end produces C lan-
guage files from terms in the AUTOBAYES Intermediate

Language. It can also generate C++ code suitable for com-
pilation with a number of different libraries, for example
Octave and MATLAB. In this application we generate stan-
dalone C code.

In order to ensure that the nominal source program and
the perturbed programs do not differ in formatting or use of
comments, the AUTOBAYES Intermediate Language term
� obtained by parsing the original source program is fed
through the code generator, resulting in a C source file
which may differ from the original source file in format-
ting, but is otherwise functionally identical.

Each variant AUTOBAYES Intermediate Language term
generated by the perturbation process above is fed in turn
through the code generator. Usually, some of the variants
(around 50%) do not conform to legal AUTOBAYES Inter-
mediate Language syntax and do not correspond to legal C
programs. The code generator fails to generate code from
these. The variants which are syntactically valid each pro-
duce a single C program.

7.5. Localization of Differences

In
�
5, lines of the nominal target were annotated with

the perturbation commands, which served both to specify
both the line number of the perturbation and what substitu-
tion was applied to derive the perturbation. In the automat-
ically derived perturbations there is not necessarily a suc-
cinct way (such as a substitution) to specify exactly how the
perturbed source was derived from the nominal source. We
therefore omit that information and only annotate the nomi-
nal target with the line numbers of lines affected by the cor-
responding perturbation. These line numbers are derived by



comparing the perturbed C program with the nominal C pro-
gram using diff -w.

7.6. Results

We applied the automatic perturbation and subsequent
traceability analysis to a simple C program which contained
a number of features: two for loops, floating point arith-
metic, an if ... then ... else statement. Four ex-
periments were carried out using only swaps, only deletes,
only copies, and only small copies. Two additional experi-
ments were performed: one employing the copy technique
with different (automatically generated) perturbations, and
one employing the delete technique with one of the pertur-
bations from the original delete experiment excluded. The
traceability links for the resulting six annotated assembly
language programs were evaluated according to:

� Accuracy: what percentage of the annotated lines cor-
rectly linked the nominal target to the corresponding C
source program statement?

� Coverage: what percentage of the lines in the nominal
target were correctly linked to a line in the source C
program?

Where a line in the nominal target is linked to more than
one line in the nominal source, the linkage is deemed incor-
rect if any of the links are incorrect.

The results of the experiments are summarized in the ta-
ble below. The first row gives the kind of operation per-
formed, the second and third rows give the accuracy
and coverage. Figures for accuracy are number of cor-
rect links/total number of links. Figures for coverage are
number of correct links/total number of lines in nominal tar-
get. The additional experiments are labeled copy2 and del2.
Each experiment accumulated the result of 15-20 perturba-
tions.

opn copy copy2 swap del del2 small
acc 78/88 45/59 1/102 1/137 53/65 39/45
cvg 78/179 45/179 1/179 1/179 53/179 39/179

Results for the copy operations were good: more than
75% of the derived traceability links were correct. Results
for the swap and delete operations were bad. A significant
reason that the result of the swap operations is so astound-
ingly poor is that each swap produces two differences be-
tween the nominal and perturbed source, and each line in the
nominal target will in general be linked to one of those —
so one will be wrong, and the link will be deemed incorrect.
The failure to derive useful information from the first exper-
iment using delete operations is caused by one of the auto-
matically generated perturbations, which deletes the entire

body of the outer for loop, thereby affecting a large num-
ber of lines in the resulting compiled program and causing
much of the nominal target program to be annotated with
every line of that body. When that perturbation is excluded
(in experiment del2), the results are comparable to those ob-
tained using copying.

The results indicate that the automatically generated per-
turbations using the copy and smallcopy operations are ef-
fective. The swap operation is not useful for generating
traceability information. The delete operation may be use-
ful as long as perturbations which delete large sections of
code are avoided.

Coverage may be improved by applying more perturba-
tions in each experiment.

8. Related Work

The most closely related work is in program understand-
ing, although little work in that area has not been applied to
automatically generated artifacts. In [CE01], a technique is
presented which analyzes assembler code to locate jump ta-
bles (which arise when compiling case statements). The
technique is based on slicing and analysis of use of mem-
ory locations and registers in the code. It may be possible to
use our shallow traceability technique to locate jump tables.
In [ACPT01], traceability links from a design document or
artifact to its a program which implements it are generated
by locating similarities between the design and implemen-
tation.

9. Applications

We envisage the following applications of the derived
traceability information:

� Facilitate understanding of a synthesized program (or
assembler produced by a compiler, or some other auto-
matically generated artifact). This is important in cases
where the user of a synthesis system may not under-
stand or trust the synthesis process, or when the syn-
thesized program needs to be manually reviewed or
edited.

� Ensure that requirements are (correctly) implemented.
Some lines in the specification are not linked to any
lines in the synthesized program because changing
them does not affect the synthesized program. If these
specification lines correspond to parts of important re-
quirements, then we may have identified a problem.

� Determine the effects of parts of the specification. For
example, in AUTOFILTER we can specify approxima-
tions which may be applied to the synthesized program



(e.g. for efficiency reasons). The traceability informa-
tion we derive can pinpoint the effects, if any, of these
approximations.

10. Further Work

Our experiments have shown that the proposed technique
can be automated and can correctly link source lines to re-
lated target lines. The technique can be accurate but in each
of our experiments coverage was relatively low, i.e. many
lines in the generated target could not be traced back to any
line in the source. It is possible to improve coverage by ac-
cumulating the results of more perturbations in each anno-
tated target, but we expect this will accumulate erroneous
as well as correct links. The figures in our evaluation ta-
ble might then get worse. One interesting possibility would
be apply a very large number of perturbations and to gen-
erate probabilities for each link — a link which is gener-
ated by 400 different perturbations is more credible than
one which is generated by 3. Erroneous links may then be
less of a problem.

In the AUTOFILTER example, many of the lines in the
synthesized program were marked as changed merely be-
cause a variable name had changed. This suggests that a
more sophisticated way of determining differences, which
takes account of unimportant changes in variable names (i.e.

� -equivalence) would be useful. Similarly, in the GCC ex-
ample, some changes affected a large number of lines in
the generated assembler code because they changed mem-
ory addresses or register allocation.

The annotated target produced by the system is adequate
for experiments but a better form of output would be useful,
for example lines in the annotated target could be linked us-
ing HTML to the lines in the source which affected them or
presented in the form of a traceability matrix.

The technique needs to be evaluated on more complex
programs and specifications.

11. Conclusions

The technique we have presented, though extremely sim-
ple, has the power to discover relationships between source
and target which would otherwise require detailed knowl-
edge of source and target languages, the meaning of the
source and target programs, or the program generation
(compilation) mechanism itself. We successfully leverage
the automation of the code generation (or compilation) pro-
cess, which is an essential component of the technique.

The results are promising:

1. Inspection of the results indicates that in semiauto-
matic experiments with our synthesis system, most of
the connections derived from the specification to the
synthesized code are correct, and around half of the

lines in the synthesized code can be traced back to at
least one line of the specification.

2. In the case of compilation, 75% of the traceability links
derived using automatic perturbation involving copy-
ing were correct. 20-40% of the lines in the gener-
ated assembler could be correctly traced back to the
C source program. Perturbations generated by swap-
ping or deleting did not generate any useful traceabil-
ity links.

3. Small changes in the source often (especially in the
GCC examples) induce small changes in the target.
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